中文版
 

Dr. Haoxin Zhou: 菱方三层石墨烯中的铁磁和超导性 (2021/09/16)

( 2021-09-15 )
Title

菱方三层石墨烯中的铁磁和超导性

Speaker


Dr. Haoxin Zhou

California Institute of Technology, USA


Time

10:00am, September 16, 2021

Place

Website (virtual)https://www.koushare.com/live/srw


Brief Bio of the Speaker

周昊欣于2015年本科毕业于中国科学技术大学少年班学院,2021年在美国加州大学圣巴巴拉分校获得物理学博士学位,导师是Prof. Andrea Young。他的研究集中在二维材料范德华异质结在低温下的热力学和输运性质,包括量子霍尔效应,关联电子磁性等。相关成果发表在NatureScience 5篇,Nature Physics 2篇,Physical Review Letter 1篇。他于2021年获得加州理工学院IQIM Postdoctoral Fellowship,继续从事相关领域的研究工作。

Abstract

I will be presenting our observation of ferromagnetism and superconductivity in rhombohedral trilayer graphene. Rhombohedral trilayer graphene is a two-dimensional electron system where three layers of graphene are stacked to form a rhombohedral lattice. The band structure of rhombohedral trilayer graphene features van Hove singularities in the low energy regime, where the density of states diverges. The van Hove singularities can be enhanced by applying an electrical displacement field perpendicular to the sample, inducing Fermi surface instability. By combining cryogenic electrical transport measurement and quantum capacitance measurement, we found the Fermi surface instability drives spontaneous ferromagnetic polarization of the electron system into one or more spin- and valley flavors. The interplay of magnetic phase transitions and the change of the Fermi surface topology lead to a complex phase diagram in the density – displacement field space. More interestingly, superconductivity is observed near some phase boundaries, featuring zero resistance below 100mK that can be eliminated by sufficiently large electrical current or magnetic field. While the major features of the magnetic phase diagram can be captured by a simple Stoner model, the origin of superconductivity remains unclear. Our observation of the ferromagnetism and superconductivity in an itinerant electronic system may enable a new class of field-effect controlled mesoscopic electronic devices combining correlated electron phenomena.



Seminar
 
[2025-06-12]
[2025-06-05]
[2025-05-20]
[2025-05-14]
[2025-05-12]
[2025-05-12]
[2025-05-12]
[2025-05-08]
Links
 
CopyRight@International Center for Quantum Eesign of Functional Materials
Counter :